一线算法工程师,全程面授指导,让每一位学员高薪就业
课程咨询:180 0058 5380
猎维人工智能培训

如何看待当下的人工智能热潮?

发布时间:2019-11-25 11:00:00   分类: 行业资讯   阅读量:48  作者:猎维人工智能培训

当前位置: 猎维科技AI培训 > 行业资讯 > 如何看待当下的人工智能热潮?

工智能目前无论在企业还是投资界都是被火爆地追逐着。说实在话,当IBM在 2011年构建出 Watson,并首次在智力竞赛中打败最优秀的人类选手时,能预见人工智能对未来业界发展的重要性,但没有想象到这种人人谈人工智能的火爆局面。

如何看待当下的人工智能热潮?

纵观整个信息技术在过去10年的发展,无论是10年前移动通信的发展热潮,还是5年前云计算的风起云涌,都没有今天人工智能被关注的广泛性和火爆性。原因是什么呢?是今天人工智能的可实验性远远高于之前的信息科技,并且人工智能的发展已经取得了初步的成功。这个“可实验性”是指一个开发者、一个大学生,甚至会编程的中学生都可以进行人工智能实验性的尝试。它来源于整个开源社区在代码和数据上的整体贡献, 得益于整个信息科技领域对开源文化的推动,也得益于几个大的人工智能会议对被录用文章的数据和代码的公开性要求。

几个大的人工智能会议对被录用文章的数据和代码的公开性要求

数据是人工智能必不可少的用于训练机器的输入

在过去几年,围绕深度学习、神经网络等算法的代码以及公开数据集层出不穷。一个开发者,只需要懂 Python,就可以在一天之内构建起一个开发环境,并把开源的代码跑起来。利用开源的数据集,就可以重现别人的结果。

一个新的人工智能研究方向出现,就伴随着一些优秀的数据集公开。例如,当年李飞飞主导的 ImageNet 为今天的图象识别(链接)奠定了最大的数据集基础,今年12月 MIT IBM Watson Lab 为了推动视频中的动作识别,共同推出的百万量级的视频动作数据集。所有的这些贡献,都是为了降低大家实验的难度,推动业界更快速地解决人工智能中的难题。在这种人人都可以尝试的氛围下,既推高了大家对这个领域的关注和兴趣,必然也带来了人云亦云的火爆。

但是,这是否就代表了今天在学术界解决了的问题,相关的技术已经可以大量地使用到工业界呢?我觉得大家需要看到工业界和学术界之间的差距。

大家需要看到数据的差异。数据是人工智能必不可少的用于训练机器的输入。而今天能在公开途径获得的数据集绝大多数都是非商业用途数据,大多数都是从互联网上积累的数据,这是人工智能的发展现状。真正用于工业场景的高价值数据是难以放到公开数据集中,也难以让千千万万研究者进行算法研究的。