AI的发展将经历三个大的历史阶段。第一个阶段是技术的智能化,第二阶段叫做经济的智能化,第三个阶段叫做社会的智能化。目前,我们正处于从经济智能化的前半段向后半段过渡的时期。如果一定要把AI分成三个类别,感知、认知和行动,那么目前已经做到了感知,认知是目前最薄弱的环节。 人工智能不是技术问题,是应用场景问题,选对了应用场景,发挥的效率就非常高。 目前人工智能已经从技术走向应用,如何将AI技术真正落地,解决每个应用场景中人们的实际需求,才最关键。
AI是所有研究的机器模仿人类等认知能力的超集。例如:与环境的交互,知识表示,感知,学习,计算机视觉,语音识别,解决问题等等。
机器学习是人工智能技术的分支,在计算机科学领域的应用使计算机无需显式编程就能学习。机器学习由能够基于数据进行学习和预测的算法组成:这类算法在前面样本基础上进行训练,以构建和估计模型;在传统编程不可行的情况下,通常采用机器学习;如果经过适当的训练,可以适应新的案例应用。
机器学习有不同的实现方法,其中包括常见的:决策树,聚类,基于规则的学习,归纳逻辑编程,深度学习。
深度学习(DL)是机器学习的子集,它是机器学习中一种基于对数据进行表征学习的方法,是一种能够模拟出人脑的神经结构的机器学习方法。主要包含4种典型的深度学习算法:卷积神经网络CNN,循环神经网络RNN,生成对抗网络GANs,深度强化学习RL。